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Abstract

Photorealistic rendering aims to produce images indistinguishable from real-world1

photographs. Traditional rendering techniques, while effective, rely heavily on syn-2

thetic models with intricate material properties. While neural rendering methods3

offer a potential solution to this problem, they often necessitate data from costly4

capturing equipment like the Light Stage or resort to low-quality synthetic data,5

hindering their ability to achieve photo-realistic rendering. To address these chal-6

lenges, we propose a novel image rendering framework including a data generation7

method and a neural rendering model. Our data generation method can create8

synthetic-real data pairs using intrinsic decomposition methods, leveraging intrin-9

sic images similar to G-buffers in the traditional rendering pipeline. Additionally,10

we introduce a photorealistic image synthesis method based on diffusion models,11

enhancing the generalization capabilities of our framework. This framework allows12

for scalable data generation and photorealistic rendering for low-quality synthetic13

objects. Experiments show that our method can not only render comparable images14

with sophisticated synthetic 3D models but can fulfill state-of-the-art rendering for15

low-quality synthetic 3D models.16

1 Introduction17

In the pursuit of photorealistic rendering, the goal is to generate images that are virtually indistinguish-18

able from real-world photographs, a necessity in fields like game production and immersive virtual19

reality. With the evolution of computer hardware, the advent of physically based rendering (PBR)20

utilizing recursive path tracing has become feasible. Over recent decades, researchers have dedicated21

significant efforts to crafting sophisticated rendering models[41][53][5] that meticulously account22

for lighting, materials, and object geometry to achieve photorealism. These rendering techniques23

are now commonplace in production engines such as Unreal Engine[15] and Unity[52]. However,24

their efficacy often hinges on the availability of high-quality CAD models with intricate material25

properties, necessitating extensive manual labor. Consequently, rendering photorealistic images26

remains a challenge when dealing with low-quality CAD models generated through manual design or27

techniques like Multi-View-Stereo (MVS).28

With the advent of deep learning, the prospect of generating photorealistic images using end-to-29

end neural networks has become a reality. Previous research[51][55][40] has utilized reflectance30

fields obtained from Light Stage[11][12] captures to construct datasets, which are then employed31

to train rendering networks. Leveraging these high-quality datasets, neural networks have achieved32

state-of-the-art results. However, acquiring such datasets poses a challenge for consumers, as it33

typically requires access to expensive Light Stage equipment. To circumvent this limitation, some34

methodologies[32][70][61] have emerged to synthesize training datasets. While these approaches35

prove effective to a certain extent, networks trained solely on synthetic datasets often struggle to36
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Figure 1: The teaser shows our major contribution to solving the problem of lacking realistic paired
images for neural rendering. According to the figure on the left side, we can enrich the realistic paired
images from three different resources - Photorealistic 3D scenes, general 3D datasets, and real images.
Though there is a large amount of photorealistic 3D scenes in film productions that can be used to
render high-quality paired datasets, it is difficult to get access to them. While manually creating more
realistic data may seem intuitive, it is a resource-intensive process, demanding significant time and
financial investment. Numerous general 3D datasets exist, but their quality may not be as satisfactory.
Compared to these two resources, generating realistic paired data from real images is promising since
the novel framework we proposed, based on intrinsic images and the neural rendering method, has
proved to be practical.

generalize well to real-world scenarios, hindering their ability to render photorealistic images for37

synthetic objects.38

In response to the challenge of limited paired data for rendering synthetic objects with photorealism,39

we present a novel data generation pipeline capable of producing synthetic-real data pairs. Our40

key insight stems from the observation that intrinsic images derived from intrinsic decomposition41

methods exhibit a domain similarity to the G-buffers within the computer graphics (CG) rendering42

pipeline, as shown in Figure 2. Specifically, we extract irradiance images, specular shading images,43

and albedo images as the source data, as they encompass low-frequency lighting information, high-44

frequency view-dependent information, and identity information, respectively. To obtain these images45

from natural scenes, we employ the IntrinsicAnything[9] method which is trained on the synthetic46

Objaverse dataset[13]. While IntrinsicAnything excels in generating high-quality albedo images47

and specular shading images, it lacks the capability to produce irradiance images. To address this48

limitation, we introduce a novel method designed to generate all aforementioned intrinsic components.49

With the generated data, we further propose a photorealistic image synthesis method based on the50

diffusion model. Recently, the diffusion model[19][46] has demonstrated state-of-the-art performance51

across various tasks[24][36][33][16]. These methodologies have shown that diffusion models, even52

when fine-tuned on small datasets, exhibit strong generalization capabilities. This is primarily53

attributed to the robust priors learned by diffusion models from extensive real data. In this paper,54

we also capitalize on the strength of the diffusion prior. Specifically, we first use pre-trained visual55

encoders to extract global and local features of the intrinsic images. Then these features are injected56

into a pre-trained text-to-image diffusion model as guidance.57

Through our data generation pipeline, we can readily scale up the training dataset by gathering58

extensive natural images from the internet and processing them. This scalability is pivotal for59

enhancing the generalization capabilities of neural networks. Moreover, leveraging the robust60

diffusion prior, our fine-tuned diffusion model excels not only in rendering comparable images for61

high-quality CAD models but also in generating photorealistic images for even the most low-quality62

synthetic objects. In summary, our main contributions are:63
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Figure 2: Visualization of the G-buffers and intrinsic images.

• We propose a novel training framework for photo-realistic image synthesis which includes a64

data generation method and a neural rendering model.65

• We achieve state-of-the-art photorealistic rendering results.66

2 Related work67

2.1 Photorealistic Rendering68

Modern graphics heavily rely on Physically Based Rendering (PBR) techniques to achieve pho-69

torealism. PBR methods[41][4][53][5], incorporating lighting, materials, and geometry, render70

meticulously crafted CAD models according to the rendering equation. Early graphic production71

saw the prominence of models like the Phong[41] and its variant, the Blinn-Phong[4] model, which72

delivered a commendable performance. However, sophisticated material properties were necessitated73

for more realistic rendering, leading to the development of advanced models like the Cook-Torance74

GGX[53] and Disney GGX[5]. While these PBR methods enable photo-realistic rendering, they75

demand high-quality CAD models with intricate materials and geometry, incurring substantial costs.76

To address this challenge, Paul Debevec et al. introduced the Light Stage[12], enabling the capture77

of reflectance fields for human portraits, facilitating rendering under any natural environment[10].78

Although combining reflectance fields with environment maps can produce nearly natural images,79

this approach is limited to subjects with pre-captured reflectance fields. Moreover, accessibility to80

such technology remains restricted, constraining its widespread application.81

Another significant avenue of photorealistic rendering is neural rendering, which harnesses the82

power of neural networks to generate high-quality images. A common task in neural rendering is83

relighting, wherein the goal is to alter the appearance of subjects in an image to match a different84

target environment light. Existing learning-based approaches either[51][55][40][43][67][25] utilize85

images generated from reflectance fields[11] or synthesized datasets[32][70][61] to train end-to-end86

networks for single image relighting. Some methods[51][70][43][67] alter the light information and87

re-render input images fully in the latent space, while others[32][55][40][61] first estimate intrinsic88

image properties before combining them with target lighting for neural rendering. SIPR[51] and89

DSIPR[70] inject target lighting into the network bottleneck and use the decoder for rendering.90

PhotoApp[43] edits lighting in the latent space of StyleGAN[23], then decodes the latent code for91

rendering. NVPR[67] introduces self-supervised losses to disentangle lighting and identity features,92

which helps to render with novel light. Li et al.[32] design a multi-bounce scheme to ease the problem93

of not considering the global illumination and a cascade framework for narrowing the errors of the94

predictions. Thanks to the existence of the shadow maps and specular maps in the generated dataset,95

Wang et al. [55] design the SS network to predict the specular maps and shadows maps which are96

input into the composition network together with light and albedo to composite a realistic rendering97

image. Total Relighting[40] utilizes convolved environment maps and normal maps to generate98

light maps containing explicit lighting cues. These light maps, along with other intrinsic properties,99

serve as inputs to a shading network for rendering photorealistic images. Due to the absence of100

publicly available light stage datasets, Lumos[61] relies on purchased 3D face scans to generate large-101

scale relighting pairs. Following the Total Relighting framework, Lumos initially trains networks102

using synthetic datasets and then refines the results by learning a residual map that minimizes the103

domain gap between synthetic and real albedo using a real dataset. By leveraging extracted image104
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intrinsics, SwitchLight[25] combines the Cook-Torrance model for initial relighting with a neural105

network for enhanced refinement. Recently, diffusion models[19][46] trained on large-scale natural106

images have demonstrated impressive performance across various vision tasks. To fully exploit the107

priors embedded in diffusion models for rendering, several recent works[14][42][27][63] have made108

notable attempts. DiffusionRig[14] and DiFaReli[42] first utilize DECA to predict FLAME[30]109

parameters and spherical harmonics (SH) light information. Subsequently, they render physical110

buffers containing light information to guide the diffusion process. LightIt[27] predicts shading maps111

for outdoor scenes, utilizing them as conditions for generating relighted images. DiLightNet[63], by112

pre-defining multiple roughness levels, generates radiance hints as guidance for the diffusion model.113

In our paper, we aim to condition the diffusion model on albedo, irradiance, and specular shading114

maps to achieve photo-realistic rendering.115

2.2 Inverse Rendering116

Inverse rendering endeavors to recover the intrinsic properties (such as geometry, materi-117

als, and lighting) of a scene or object, either in 2D[17][28][20][31][62][59][35][58][56] or118

3D[7][57][1][54][66][50][68][65][69][29][21][64][34][38] space. In 3D inverse rendering, some119

methods[7][1][54][57] address the problem based on explicit mesh. DIB-R++[7] first predicts the120

mesh with UV mapping from the input single image, then optimizes the material textures and121

lighting via the differentiable renderer. Azinovic et al.[1] and SunStage[54] estimate the material122

textures based on the reconstructed FLAME mesh. FIPT[57] calculates the pre-baked shading123

maps with the provided or optimized mesh and uses the shading maps for materials estimation.124

Others[50][68][29][66][65][69][34][38] optimize all the intrinsics in implicit neural radiance field.125

To adapt Nerf[37] for inverse rendering, NERV[50], NerFactor[68] and NEROIC[29] assign materials126

for each sample point and calculate the outgoing radiance of them with physically-based rendering127

(PBR). These models[66][65][69][34][38] represent geometry as signed distance function (SDF) and128

optimize the neural materials of the implicit surfaces.129

While inverse rendering in 3D has achieved promising results, it often suffers from computational130

inefficiencies due to the utilization of computation-intensive Multi-Layer Perceptron (MLP). To131

mitigate this issue, single-image inverse rendering focuses on recovering intrinsic properties using132

more generalizable neural networks. David et al. [17] treats the albedo estimation task as a light133

diffusion process and iteratively diffuses the image to get albedo. IID[28], trained on indoor synthetic134

datasets, utilizes diffusion priors to estimate material maps. Due to the lack of ground truth material135

maps, unsupervised methods[20][31][62][59][35][58][56] estimate the intrinsics based on hand-136

crafted priors.137

3 Method138

Given G-buffers or intrinsic images of an object, our task is to render photo-realistic images. Figure 1139

shows the overview of our framework. Our innovation is in a novel rendering framework that includes140

a novel synthetic-real paired data generation method (Section 3.1) and a rendering method leveraging141

strong diffusion priors. To render photo-realistic images with G-buffers or intrinsic images, our core142

idea is to extract the global identity features (Section 3.2.1) and the local detailed features (Section143

3.2.2), then inject (Section 3.3) them into a pre-trained text-to-image diffusion model.144

3.1 Data generation145

Though neural rendering shows great performance in fulfilling photo-realism, the data is hard to146

collect. To solve this problem, we are the first to generate intrinsic-real data pairs for training. Our147

key observation is that the intrinsic images estimated by intrinsic decomposition methods share a148

similar domain to the G-buffers of synthetic CAD models. Thus, we can treat the intrinsic domain as149

a proxy domain, the images from which can be rendered or mapped to natural images. After training,150

we can obtain photo-realistic images from the G-buffers of the synthetic CAD models.151

To get the intrinsic images of natural images, we take the state-of-the-art intrinsic decomposition152

method IntrinsicAnything[9] as the baseline, which can generate the albedo image and specular153

shading image from a natural image. However, these two images cannot fully represent the informa-154

tion present in an image, as they only contain the identity and high-frequency lighting information155

4



Training stage

Diffusion Model
Local 

features

Recomposition

Global feature 
extractor

Intrinsic 
decomposition

Local feature 
extractor

Albedo Irradiance Specular 

Intrinsic images

Inference stage

Render

Synthetic object

Diffusion Model
Albedo Irradiance Specular 

G-buffers

Feature
extraction

Figure 3: Overview of our framework. Given natural images, we first generate intrinsic-real data
pairs for training. At the training stage, we extract the global features by encoding the recomposed
image into a pre-trained self-supervised visual encoder and extract the local features with a pre-
trained VAE encoder. We then inject the features into a pre-trained text-to-image diffusion model for
rendering. At the inference stage, we extract features of the rendered G-buffers of the synthetic CAD
model, and then inject them into the model for photo-realistic rendering.

respectively. To represent the low-frequency lighting information, we need another component, i.e.,156

the irradiance image. So the forward pass of intrinsic image generation is defined as:157

A,S, I = Fθ(I) (1)

where A, S and I are the albedo image, specular shading image, and irradiance image respectively,158

F is the intrinsic decomposition model and θ is the model parameter.159

To adapt IntrinsicAnything for irradiance estimation, we first render irradiance images for Objaverse160

dataset, then we train another diffusion model using these images for irradiance estimation.161

3.2 Feature extraction162

Previous visual encoders such as CLIP[44] and Dino[6] are built on natural images. Directly applying163

them on intrinsic images may fail to extract representative global features. To address this problem,164

we propose to recompose the intrinsic images into a natural image according to the rendering equation.165

Then we use the self-supervised model DINOv2[39] to extract the global identity features. As for166

the local detailed features, we use the pre-trained VAE encoder to extract the pixel-aligned detail167

features.168

3.2.1 Global feature extraction169

Image recomposition. The rendering equation can be represented as:170

L = Ld + Ls (2)

where Ld is the diffuse shading and Ls is the specular shading. The diffuse shading can further be171

represented as:172

Ld = A ∗ I (3)

where A is the albedo image and I is the irradiance image. So we can get the recomposed image as:173

R(x) = A(x) ∗ I(x) + S(x) (4)

5



where x is the pixel coordinate of the image, A(x), I(x) and S(x) are the albedo image, irradiance174

image, and specular shading image at x respectively. Firstly, we transform these images into linear175

space. Then we compose them according to Equation 4. Finally, we transform the linear-space image176

back to sRGB space by gamma correction. Though the recomposed image loses some high-dynamic-177

range information compared to the source natural image due to truncation, we find that the extracted178

features are robust enough for rendering.179

Feature extraction. Previous works[49][60] use the CLIP image encoder to extract the global180

features. However, the CLIP image embedding is aligned with the text embedding. Text, being a181

coarse description, is often insufficient to represent intricate details. Inspired by Anydoor[8], we182

choose the Dinov2 as our global feature extractor which encodes the image as a global token and a183

patch token. Following AnyDoor, we concatenate the two tokens and use a linear layer to project the184

tokens to the diffusion embedding space. The process is defined as:185

tl, tg = FG(R) (5)

fg = L(Con(tl, tg)) (6)

where R is the recomposed image, FG is the Dinov2 model, tl is the patch token, tg is the global186

token, Con means concatenation along channel dimension, L is the linear projection layer and fg is187

the global feature in the diffusion embedding space.188

3.2.2 Local feature extraction189

Global features encode the identity of the object, while local features encode the details of the190

object. Though the VAE model of Stable Diffusion is also trained on natural images, these191

methods[24][16][36] proved that they can extract features rich in detailed information for intrinsic192

images such as the normal map and the depth map. Thus, we use the pre-trained VAE encoder to193

extract the pixel-aligned detail features. Specifically, we first use the VAE encoder to encode the194

three intrinsic images. Then we concatenate the three feature maps along the channel dimension. The195

concatenated feature map will further be concatenated with the noise image as the input to the Unet196

encoder.197

The process is defined as:198

fa, fi, fs = FL(A, I, S) (7)

fl = Con(fa, fi, fs) (8)

where A, I , and S are the albedo image, irradiance image, and specular shading image respectively,199

FL is the pre-trained VAE encoder, fa, fi and fs are the albedo feature map, irradiance feature200

map and specular shading feature map respectively, and Con means concatenation along channel201

dimension.202

3.3 Feature injection203

After obtaining the global and local features, we inject them into a pre-trained text-to-image diffusion204

model. In our paper, we take the Stable Diffusion[47] as the backbone which has been demonstrated205

robust. We denote the diffusion model as ϵθ, so the training objective can be defined as:206

Et,x0,ϵ,c

[∥∥ϵ− ϵθ
(√

ᾱtx0 +
√
1− ᾱtϵ, t, c

)∥∥
2

]
(9)

where ᾱt is the schedule parameter, x0 is the target image, ϵ is the noise image sampled from N(0, I),207

t is the time step, and c is the extracted features. The training objective is to minimize the L2 distance208

between the predicted noise vector and the ground-truth sampled noise vector.209

Specifically, we inject the global features into the diffusion model by replacing the text embedding210

with them and performing cross-attention between them and Unet intermediate features. As for the211

local detailed features, we concatenate them with the noise image as the input to the Unet encoder.212
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4 Experiments213

4.1 Implement Details214

We implement all our methods in Pytorch. We use the Adam[26] optimizer with an initial learning215

rate of 1e−5 and linearly decay the learning rate to 0. During each iteration, we take a batch size of216

128 for training. We optimize our model for 20k iterations which takes 4 days on 8 Nvidia A800217

(80GB) GPUs. Other hyperparameters for our network follow the default settings in the Stable218

Diffusion model.219

4.2 Dataset and Metrics220

Table 1: Comparison of FID, KID, and Inception Score on face and car datasets

Method Face Dataset Car Dataset

FID ↓ KID×103 ↓ Inception Score ↑ FID ↓ KID×103 ↓ Inception Score ↑
PBR 42.5 37.1±1.2 3.88±0.19 32.1 9.64±0.09 2.25±0.19
Ours 31.1 25.0±1.2 4.18±0.18 28.9 7.17±0.06 2.23±0.17

Datasets As mentioned, our training framework can generate synthetic-real paired data from real221

data. To evaluate the performance of the framework and the diffusion-based synthesis method, we222

conducted experiments on two real datasets: the real car dataset and the real face dataset. We collected223

the car dataset from the Internet. This dataset contains about 1000 cars, each of which has about224

6 multi-view images. For the face dataset, we used the FFHQ dataset [22] that provides 70,000225

high-quality face images in total. We split the car and face datasets so that ninety percent of them are226

used for training and the rest are used for evaluation. To prove the capability of generalization, we227

test our model on limited-quality synthetic face and car models collected from TURBOSQUID and228

CGTrader website. The links of these models are presented in the supplement material. Furthermore,229

we also evaluate our model on a high-quality synthetic dataset–hyperSim [45] that contains over230

77400 photorealistic images of 461 indoor scenes with sophisticated and accurate lighting, materials,231

and geometry.232

Metrics Metrics for evaluating the realism of the generated images have been widely used in the233

field of generative models. The most common metrics are Inception Score (IS) [48], Fréchet Inception234

Distance (FID) [18], and Kernel Inception Distance (KID) [2]. Inception score aims to measure the235

diversity and recognizability of generated images. It uses a pre-trained Inception network to classify236

generated images and calculates the score based on the entropy of the predicted class distribution. A237

high IS indicates that the generated images are both diverse and confidently classified into specific238

categories. However, IS does not consider the distribution difference between the generated images239

and the real images. FID assesses the similarity between the distributions of generated images and real240

images. It calculates the Fréchet distance between the feature vectors of real and generated images,241

extracted from a specific layer of a pre-trained Inception network. Lower FID values indicate that242

the generated images are closer in distribution to the real images. KID also evaluates the similarity243

between generated and real images but emphasizes semantic content. It uses a polynomial kernel to244

compute the Maximum Mean Discrepancy (MMD) between the feature representations of generated245

and real images, extracted from the third pooling layer (pool3) of a pre-trained Inception network.246

Lower KID values indicate better alignment between the distributions of generated and real images. It247

is widely accepted that these three metrics are complementary and should be used together to provide248

a comprehensive evaluation of the generated images.249

Table 1 compares FID, KID, and Inception Score across different methods on the FFHQ dataset250

and our collected car dataset. Please note that PBR means directly computing the rendered results251

according to the recomposition method explained in Section 3.2.1 and KID has been shown with252

×1000 for better readability. The gray part indicates the standard deviation of the metrics.253
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PBR OursAlbedo Irradiance Specular

Figure 4: This figure shows some results of our diffusion-based method compared to the physically
based rendering method on synthetic data. The models produced the face-related results trained on
the FFHQ [22] dataset and the car-related results trained on our collected car dataset. Please note that
face data have slight metallicity due to the capture process, which will result in the irregular specular
effect present in the PBR-rendered images. However, our method can still generate realistic results.
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Figure 5: Ablation study for recomposition method.

4.3 Comparison with Baselines254

Since our task aims to render photo-realistic images from G-buffers or intrinsic images, we compare255

our method with the physically based rendering (PBR) method. Specifically, we use the Principled256

BSDF node in Blender[3] as the description of the object’s material and use environment maps as the257

light conditions for rendering. Our results show that we can achieve indistinguishable photo-realistic258

results compared to the baseline and even limited automatic realistic relighting. Some of our results259

are shown in Figure 4. Other test results on hyperSim[45] dataset are shown in the supplementary260

material, which are from .261

4.4 Ablation Study262

Recomposition The diffusion-based synthesis method is the core of our framework, and we263

conduct ablation studies to verify the effectiveness of the recomposition method. It is proved that264

the recomposition method can better guide the diffusion model. By recomposition, the generated265

images are more realistic and have better details. The examples are shown in the Figure 5. Due to the266

low-resolution of our output, the results may not be significantly different. However, the enlarged267

areas show kinds of details, which proves the effectiveness of our recomposition method.268

Neural rendering method Before the hyper enthusiasm of diffusion-based image synthesis, there269

were also some neural rendering methods based on convolution networks. We also conduct this270

method on the above two datasets. The network used here is the Resnet Generator from the271

CycleGAN[71] method. The results in Figure 6 show that the results of face data are well sat-272

isfactory but those of cars are short of details and realism. Predictably, the network could perform273

well with enough data (the FFHQ dataset has nearly 70000 images, and the real car dataset only has274

6000 images), which also means lots of data-driven methods could be progressed with our scalable275

data generation method.276

5 Limitations277

Our method relies highly on the quality of the generated data which is not guaranteed. In practice, we278

can find noisy data generated by the intrinsic decomposition method. Using these data for training279

may degrade the performance of the model. Meanwhile, the resolution of the generated intrinsic280

images is low due to the limitation of the intrinsic model, preventing the attainment of high-quality281
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Figure 6: Ablation study for difference neural rendering methods.

results. This remains a future work for the intrinsic decomposition task. Besides, our method is based282

on the diffusion model, which is computationally expensive and not suitable for real-time rendering.283

6 Conclusion284

In this paper, we introduce a novel framework for photo-realistic rendering. This framework includes285

a novel synthetic-real paired data generation method and a diffusion-based neural rendering method.286

The data generation method leverages the intrinsic decomposition method to generate intrinsic images287

for real data. With these data, we extract their global and local features, and then inject them into a288

pre-trained text-to-image diffusion model. Qualitative and quantitative experiments demonstrate the289

effectiveness of our framework in generating photo-realistic images.290
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A Appendix504

Figure 7: Rendering results on Hypersim dataset. The first and third columns are the rendered
images while the second and the fourth are the ground truth images.
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Justification: The main claims made in the abstract and introduction accurately reflect the510

contributions and scope of our paper.511
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made in the paper.514
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much the results can be expected to generalize to other settings.519
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are not attained by the paper.521

2. Limitations522

Question: Does the paper discuss the limitations of the work performed by the authors?523

Answer: [Yes]524

Justification: Our paper discusses the limitations of our method.525

Guidelines:526

• The answer NA means that the paper has no limitation while the answer No means that527

the paper has limitations, but those are not discussed in the paper.528

• The authors are encouraged to create a separate "Limitations" section in their paper.529

• The paper should point out any strong assumptions and how robust the results are to530
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model well-specification, asymptotic approximations only holding locally). The authors532
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Justification: Our paper does not include theoretical results.557

Guidelines:558

• The answer NA means that the paper does not include theoretical results.559

• All the theorems, formulas, and proofs in the paper should be numbered and cross-560

referenced.561

• All assumptions should be clearly stated or referenced in the statement of any theorems.562

• The proofs can either appear in the main paper or the supplemental material, but if563

they appear in the supplemental material, the authors are encouraged to provide a short564

proof sketch to provide intuition.565

• Inversely, any informal proof provided in the core of the paper should be complemented566

by formal proofs provided in appendix or supplemental material.567

• Theorems and Lemmas that the proof relies upon should be properly referenced.568

4. Experimental Result Reproducibility569

Question: Does the paper fully disclose all the information needed to reproduce the main ex-570

perimental results of the paper to the extent that it affects the main claims and/or conclusions571

of the paper (regardless of whether the code and data are provided or not)?572

Answer: [Yes]573

Justification: Our paper fully discloses all the information needed to reproduce the main574

experimental results.575

Guidelines:576

• The answer NA means that the paper does not include experiments.577

• If the paper includes experiments, a No answer to this question will not be perceived578

well by the reviewers: Making the paper reproducible is important, regardless of579

whether the code and data are provided or not.580

• If the contribution is a dataset and/or model, the authors should describe the steps taken581

to make their results reproducible or verifiable.582

• Depending on the contribution, reproducibility can be accomplished in various ways.583

For example, if the contribution is a novel architecture, describing the architecture fully584

might suffice, or if the contribution is a specific model and empirical evaluation, it may585

be necessary to either make it possible for others to replicate the model with the same586

dataset, or provide access to the model. In general. releasing code and data is often587

one good way to accomplish this, but reproducibility can also be provided via detailed588

instructions for how to replicate the results, access to a hosted model (e.g., in the case589

of a large language model), releasing of a model checkpoint, or other means that are590

appropriate to the research performed.591

• While NeurIPS does not require releasing code, the conference does require all submis-592

sions to provide some reasonable avenue for reproducibility, which may depend on the593

nature of the contribution. For example594

(a) If the contribution is primarily a new algorithm, the paper should make it clear how595

to reproduce that algorithm.596

(b) If the contribution is primarily a new model architecture, the paper should describe597

the architecture clearly and fully.598

(c) If the contribution is a new model (e.g., a large language model), then there should599

either be a way to access this model for reproducing the results or a way to reproduce600

the model (e.g., with an open-source dataset or instructions for how to construct601

the dataset).602

(d) We recognize that reproducibility may be tricky in some cases, in which case603

authors are welcome to describe the particular way they provide for reproducibility.604

In the case of closed-source models, it may be that access to the model is limited in605

some way (e.g., to registered users), but it should be possible for other researchers606

to have some path to reproducing or verifying the results.607

5. Open access to data and code608

Question: Does the paper provide open access to the data and code, with sufficient instruc-609

tions to faithfully reproduce the main experimental results, as described in supplemental610

material?611
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Answer: [Yes]612

Justification: We will release our code and data soon.613

Guidelines:614

• The answer NA means that paper does not include experiments requiring code.615

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/616

public/guides/CodeSubmissionPolicy) for more details.617

• While we encourage the release of code and data, we understand that this might not be618

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not619

including code, unless this is central to the contribution (e.g., for a new open-source620

benchmark).621

• The instructions should contain the exact command and environment needed to run to622

reproduce the results. See the NeurIPS code and data submission guidelines (https:623

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.624

• The authors should provide instructions on data access and preparation, including how625

to access the raw data, preprocessed data, intermediate data, and generated data, etc.626

• The authors should provide scripts to reproduce all experimental results for the new627

proposed method and baselines. If only a subset of experiments are reproducible, they628

should state which ones are omitted from the script and why.629

• At submission time, to preserve anonymity, the authors should release anonymized630

versions (if applicable).631

• Providing as much information as possible in supplemental material (appended to the632

paper) is recommended, but including URLs to data and code is permitted.633

6. Experimental Setting/Details634

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-635

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the636

results?637

Answer: [Yes]638

Justification: All the details mentioned above are presented in the "Experiments" section.639

Guidelines:640

• The answer NA means that the paper does not include experiments.641

• The experimental setting should be presented in the core of the paper to a level of detail642

that is necessary to appreciate the results and make sense of them.643

• The full details can be provided either with the code, in appendix, or as supplemental644

material.645

7. Experiment Statistical Significance646

Question: Does the paper report error bars suitably and correctly defined or other appropriate647

information about the statistical significance of the experiments?648

Answer: [NA]649

Justification: Our paper does not include such experiments.650

Guidelines:651

• The answer NA means that the paper does not include experiments.652

• The authors should answer "Yes" if the results are accompanied by error bars, confi-653

dence intervals, or statistical significance tests, at least for the experiments that support654

the main claims of the paper.655

• The factors of variability that the error bars are capturing should be clearly stated (for656

example, train/test split, initialization, random drawing of some parameter, or overall657

run with given experimental conditions).658

• The method for calculating the error bars should be explained (closed form formula,659

call to a library function, bootstrap, etc.)660

• The assumptions made should be given (e.g., Normally distributed errors).661

• It should be clear whether the error bar is the standard deviation or the standard error662

of the mean.663
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• It is OK to report 1-sigma error bars, but one should state it. The authors should664

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis665

of Normality of errors is not verified.666

• For asymmetric distributions, the authors should be careful not to show in tables or667

figures symmetric error bars that would yield results that are out of range (e.g. negative668

error rates).669

• If error bars are reported in tables or plots, The authors should explain in the text how670

they were calculated and reference the corresponding figures or tables in the text.671

8. Experiments Compute Resources672

Question: For each experiment, does the paper provide sufficient information on the com-673

puter resources (type of compute workers, memory, time of execution) needed to reproduce674

the experiments?675

Answer: [Yes]676

Justification: This information is provided in the "Experiments" section.677

Guidelines:678

• The answer NA means that the paper does not include experiments.679

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,680

or cloud provider, including relevant memory and storage.681

• The paper should provide the amount of compute required for each of the individual682

experimental runs as well as estimate the total compute.683

• The paper should disclose whether the full research project required more compute684

than the experiments reported in the paper (e.g., preliminary or failed experiments that685

didn’t make it into the paper).686

9. Code Of Ethics687

Question: Does the research conducted in the paper conform, in every respect, with the688

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?689

Answer: [Yes]690

Justification: The research conducted in this paper conform, in every respect, with the691

NeurIPS Code of Ethics.692

Guidelines:693

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.694

• If the authors answer No, they should explain the special circumstances that require a695

deviation from the Code of Ethics.696

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-697

eration due to laws or regulations in their jurisdiction).698

10. Broader Impacts699

Question: Does the paper discuss both potential positive societal impacts and negative700

societal impacts of the work performed?701

Answer: [NA]702

Justification: Our paper does not discuss potential negative societal impacts of the work703

performed.704

Guidelines:705

• The answer NA means that there is no societal impact of the work performed.706

• If the authors answer NA or No, they should explain why their work has no societal707

impact or why the paper does not address societal impact.708

• Examples of negative societal impacts include potential malicious or unintended uses709

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations710

(e.g., deployment of technologies that could make decisions that unfairly impact specific711

groups), privacy considerations, and security considerations.712
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• The conference expects that many papers will be foundational research and not tied713

to particular applications, let alone deployments. However, if there is a direct path to714

any negative applications, the authors should point it out. For example, it is legitimate715

to point out that an improvement in the quality of generative models could be used to716

generate deepfakes for disinformation. On the other hand, it is not needed to point out717

that a generic algorithm for optimizing neural networks could enable people to train718

models that generate Deepfakes faster.719

• The authors should consider possible harms that could arise when the technology is720

being used as intended and functioning correctly, harms that could arise when the721

technology is being used as intended but gives incorrect results, and harms following722

from (intentional or unintentional) misuse of the technology.723

• If there are negative societal impacts, the authors could also discuss possible mitigation724

strategies (e.g., gated release of models, providing defenses in addition to attacks,725

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from726

feedback over time, improving the efficiency and accessibility of ML).727

11. Safeguards728

Question: Does the paper describe safeguards that have been put in place for responsible729

release of data or models that have a high risk for misuse (e.g., pretrained language models,730

image generators, or scraped datasets)?731

Answer: [NA]732

Justification: Our paper poses no such risks.733

Guidelines:734

• The answer NA means that the paper poses no such risks.735

• Released models that have a high risk for misuse or dual-use should be released with736

necessary safeguards to allow for controlled use of the model, for example by requiring737

that users adhere to usage guidelines or restrictions to access the model or implementing738

safety filters.739

• Datasets that have been scraped from the Internet could pose safety risks. The authors740

should describe how they avoided releasing unsafe images.741

• We recognize that providing effective safeguards is challenging, and many papers do742

not require this, but we encourage authors to take this into account and make a best743

faith effort.744

12. Licenses for existing assets745

Question: Are the creators or original owners of assets (e.g., code, data, models), used in746

the paper, properly credited and are the license and terms of use explicitly mentioned and747

properly respected?748

Answer: [Yes]749

Justification: We cite the original papers and the website that produce the training and750

evaluation dataset.751

Guidelines:752

• The answer NA means that the paper does not use existing assets.753

• The authors should cite the original paper that produced the code package or dataset.754

• The authors should state which version of the asset is used and, if possible, include a755

URL.756

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.757

• For scraped data from a particular source (e.g., website), the copyright and terms of758

service of that source should be provided.759

• If assets are released, the license, copyright information, and terms of use in the760

package should be provided. For popular datasets, paperswithcode.com/datasets761

has curated licenses for some datasets. Their licensing guide can help determine the762

license of a dataset.763

• For existing datasets that are re-packaged, both the original license and the license of764

the derived asset (if it has changed) should be provided.765
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• If this information is not available online, the authors are encouraged to reach out to766

the asset’s creators.767

13. New Assets768

Question: Are new assets introduced in the paper well documented and is the documentation769

provided alongside the assets?770

Answer: [Yes]771

Justification: We introduce new assets in the "Experiments" section.772

Guidelines:773

• The answer NA means that the paper does not release new assets.774

• Researchers should communicate the details of the dataset/code/model as part of their775

submissions via structured templates. This includes details about training, license,776

limitations, etc.777

• The paper should discuss whether and how consent was obtained from people whose778

asset is used.779

• At submission time, remember to anonymize your assets (if applicable). You can either780

create an anonymized URL or include an anonymized zip file.781

14. Crowdsourcing and Research with Human Subjects782

Question: For crowdsourcing experiments and research with human subjects, does the paper783

include the full text of instructions given to participants and screenshots, if applicable, as784

well as details about compensation (if any)?785

Answer: [NA]786

Justification: Our paper does not involve crowdsourcing nor research with human subjects.787

Guidelines:788

• The answer NA means that the paper does not involve crowdsourcing nor research with789

human subjects.790

• Including this information in the supplemental material is fine, but if the main contribu-791

tion of the paper involves human subjects, then as much detail as possible should be792

included in the main paper.793

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,794

or other labor should be paid at least the minimum wage in the country of the data795

collector.796

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human797

Subjects798

Question: Does the paper describe potential risks incurred by study participants, whether799

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)800

approvals (or an equivalent approval/review based on the requirements of your country or801

institution) were obtained?802

Answer: [NA]803

Justification: Our paper does not involve crowdsourcing nor research with human subjects.804

Guidelines:805

• The answer NA means that the paper does not involve crowdsourcing nor research with806

human subjects.807

• Depending on the country in which research is conducted, IRB approval (or equivalent)808

may be required for any human subjects research. If you obtained IRB approval, you809

should clearly state this in the paper.810

• We recognize that the procedures for this may vary significantly between institutions811

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the812

guidelines for their institution.813

• For initial submissions, do not include any information that would break anonymity (if814

applicable), such as the institution conducting the review.815
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